National Aeronautics and Space Administration

Jesus Dominguez (IG/JSEG), Brittany Brown (NASA), Brian Dennis (UTA), Wilaiwan Chanmanee (UTA), Peter Curreri (NASA)

236th ECS Meeting, Atlanta, GA Oct. 13-17 2019

Modeling Electrolytic

CO₂ and Optimizing a

for Advanced Closed

Loop Life Support

Microfluidic

Systems

Conversion of Metabolic

Electrochemical Reactor

IG : Insight Global

JSEG : Jacobs Space Exploration Group UTA : University of Texas in Arlington

NASA : National Aeronautics and Space Administration

Current O₂ Recovery: ~50%

☐ Extremely high
temperatures result in
heavy reactors and high

power consumption

Current O₂ Recovery: ~50%

☐ Extremely high
temperatures result in
heavy reactors and high
power consumption

Advanced O₂ Recovery System via Electrolytic Technology

Advanced O₂ Recovery System via Electrolytic Technology

Eliminates **3** pieces of hardware for future ECLSS architectures:

- 1) Sabatier reactor
- 2) PPA
- 3) OGA
- Higher O₂ recovery rate
- Higher reliability
- Less complex
- Lower power consumption
- Lower mass

Eliminates **3** pieces of hardware for future ECLSS architectures:

- 1) Sabatier reactor
- 2) PPA
- 3) OGA
- Higher O₂ recovery rate
- Higher reliability
- Less complex
- Lower power consumption
- Lower mass

Advanced O₂ Recovery System via Electrolytic Technology

In 2016, NASA's Game Changing Development Program awarded the University of Texas at Arlington to develop a microfluidic electrochemical reactor (MFECR) to convert CO₂ into oxygen and ethylene with a theoretical oxygen recovery rate of 73%.

Theoretical O₂ Recovery Rate: **73%**

Development of Advanced O₂ Electrolytic Recovery System

GAME CHANGING ELECTROCHEMICAL REACTOR FOR ADVANCED ECLSS

PROJECT OBJECTIVES

- 1. Advance the technology readiness of the proposed technology to TRL 4.
- 2. To increase the O_2 recovery efficiency of the process to >50% (from 37% currently)
- 3. To mature the hardware system to process 1.0 kg/day of CO₂

Technology Advancement Overview

- 3D Multi-physics model developed at NASA Marshall Space Flight Center (MFSC) on electrochemical CO₂ conversion to O₂ and C₂H₄ at ambient conditions via MFECR.
- In the model the electrochemical physics is coupled with all the other physics phenomena involved in the process, such as fluid flow and mass transfer of reactant/product species in free and porous media, convective/conduction/radiative heat transfer, as well as conduction of DC electrical current with Joule heating generation.
- This work aims to use this 3D model to build a comprehensive, rigorous, and experimentally validated simulator that will be used as a valuable tool to not only assist the authors on the EDU design but also to optimize its operation.

MFECR's 3D Model

CAD drawing used to fabricate the MFECR's elements as material domains for the model.

Assembled MFECR's elements

Electrode

Electrolyte wall

Fabrication of MFECR's elements (CAD's drawings)

MFECR's CAD drawing

MFECR's model domain (fittings removed)

MFECR model's memory required: 185 GB High-Performance Computer (512 GB RAM): Physical memory 183 GB Virtual memory 2 GB

MFECR model's material domains

MFECR Model's flow domains

Model's Flow Domains

Brinkman approach for velocity/pressure:

- free medium on serpentines
- porous medium on GDL and MPL.

Maxwell-Stefan approach for mass transport of concentrated species on serpentines, GDL, and MPL.

Model approach on flow rate and pressure

Given a differential electrical potential applied between electrodes, Ohm's law and the charge conservation equation is used to determine current/potential distribution through all MFECR's elements.

2.5

1.5

Heat transfer mechanisms:

- Conduction
- Free convection outer surface ambient
- Thermal radiation outer surface ambient
- Flowing gas/liquid convection
- Joule heating

Model approach on heat transfer

<u>당</u>	Acid Electrolyte	E° (V)
βC	Cathode	L (V)
as byproduct	$2\text{CO}_2 + 12\text{H}^+ + 12\text{e}^- = \text{C}_2\text{H}_4 + 4\text{H}_2\text{O}$ $12\text{H}^+ + 12\text{e}^- = 6\text{H}_2$ Anode	-0.35 0.00
h H ₂ a	$12H_2O = 24H^+ + 24e^- + 6O_2$ Total	-1.23
₁₄ wit	$2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$	-1.58
Conversion to C ₂ H ₄ with H ₂	Alkaline Electrolyte Cathode $2CO_2 + 8H_2O + 12e^- = C_2H_4 + 12OH^ 12H_2O + 12e^- = 6H_2 + 12OH^-$ Anode $12OH^- = 6H_2O + 12e^- + 3O_2$	-1.18 -0.40 -0.83
CO ₂ (Total $2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$	-2.41

	Acid Electrolyte	E° (V)
H ₂ O Electrolysis	Cathode 4H ⁺ + 4e ⁻ = 2H ₂ Anode	0.00
	$2H_2O = 4H^+ + 4e^- + O_2$	-1.23
	Total $2H_2O = 2H_2 + O_2$	-1.23
	Alkaline Electrolyte Cathode $4H_2O + 4e^- = 2H_2 + 4OH^-$	-0.40
	Anode $4OH^{-} = 2H_{2}O + 4e^{-} + O_{2}$ Total	-0.83
	$2H_2O = 2H_2 + O_2$	-1.23

Model's Electrochemical reactions on GDL domains

Model approach on EC cathodic reactions

- A rigorous model has been developed and deployed to simulate a MFECR unit and optimize the design and performance.
- The MFECR unit is equipped with the instrumentation and meters that will allow full validation of the model including determination of the electrochemical kinetics parameters.

Conclusions